# Cyclic Redundancy Check and Modulo-2 Division

CRC or Cyclic Redundancy Check is a method of detecting accidental changes/errors in the communication channel.

CRC uses **Generator Polynomial **which is available on both sender and receiver side. An example generator polynomial is of the form like x^{3} + x + 1. This generator polynomial represents key 1011. Another example is x^{2} + 1 that represents key 101.

n : Number of bits in data to be sent from sender side. k : Number of bits in the key obtained from generator polynomial.

**Sender Side (Generation of Encoded Data from Data and Generator Polynomial (or Key)): **

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend **live classes **with experts, please refer **DSA Live Classes for Working Professionals **and **Competitive Programming Live for Students**.

- The binary data is first augmented by adding k-1 zeros in the end of the data
- Use
to divide binary data by the key and store remainder of division.**modulo-2 binary division** - Append the remainder at the end of the data to form the encoded data and send the same

**Receiver Side (Check if there are errors introduced in transmission)**

Perform modulo-2 division again and if the remainder is 0, then there are no errors.

In this article we will focus only on finding the remainder i.e. check word and the code word.

**Modulo 2 Division:**

The process of modulo-2 binary division is the same as the familiar division process we use for decimal numbers. Just that instead of subtraction, we use XOR here.

- In each step, a copy of the divisor (or data) is XORed with the k bits of the dividend (or key).
- The result of the XOR operation (remainder) is (n-1) bits, which is used for the next step after 1 extra bit is pulled down to make it n bits long.
- When there are no bits left to pull down, we have a result. The (n-1)-bit remainder which is appended at the sender side.

**Illustration:****Example 1 (No error in transmission): **

Data word to be sent - 100100 Key - 1101 [ Or generator polynomial x^{3}+ x^{2}+ 1] Sender Side:

Therefore, the remainder is 001 and hence the encoded data sent is 100100001. Receiver Side: Code word received at the receiver side 100100001

Therefore, the remainder is all zeros. Hence, the data received has no error.

**Example 2: (Error in transmission)**

Data word to be sent - 100100 Key - 1101 Sender Side:

Therefore, the remainder is 001 and hence the code word sent is 100100001. Receiver Side Let there be an error in transmission media Code word received at the receiver side - 100000001

Since the remainder is not all zeroes, the error

is detected at the receiver side.

**Implementation**

Below implementation for generating code word from given binary data and key.

## C++

`#include<bits/stdc++.h>` `using` `namespace` `std;` ` ` `// Returns XOR of 'a' and 'b'` `// (both of same length)` `string xor1(string a, string b)` `{` ` ` ` ` `// Initialize result` ` ` `string result = ` `""` `;` ` ` ` ` `int` `n = b.length();` ` ` ` ` `// Traverse all bits, if bits are` ` ` `// same, then XOR is 0, else 1` ` ` `for` `(` `int` `i = 1; i < n; i++)` ` ` `{` ` ` `if` `(a[i] == b[i])` ` ` `result += ` `"0"` `;` ` ` `else` ` ` `result += ` `"1"` `;` ` ` `}` ` ` `return` `result;` `}` `// Performs Modulo-2 division` `string mod2div(string divident, string divisor)` `{` ` ` ` ` `// Number of bits to be XORed at a time.` ` ` `int` `pick = divisor.length();` ` ` ` ` `// Slicing the divident to appropriate` ` ` `// length for particular step` ` ` `string tmp = divident.substr(0, pick);` ` ` ` ` `int` `n = divident.length();` ` ` ` ` `while` `(pick < n)` ` ` `{` ` ` `if` `(tmp[0] == ` `'1'` `)` ` ` ` ` `// Replace the divident by the result` ` ` `// of XOR and pull 1 bit down` ` ` `tmp = xor1(divisor, tmp) + divident[pick];` ` ` `else` ` ` ` ` `// If leftmost bit is '0'.` ` ` `// If the leftmost bit of the dividend (or the` ` ` `// part used in each step) is 0, the step cannot` ` ` `// use the regular divisor; we need to use an` ` ` `// all-0s divisor.` ` ` `tmp = xor1(std::string(pick, ` `'0'` `), tmp) +` ` ` `divident[pick];` ` ` ` ` `// Increment pick to move further` ` ` `pick += 1;` ` ` `}` ` ` ` ` `// For the last n bits, we have to carry it out` ` ` `// normally as increased value of pick will cause` ` ` `// Index Out of Bounds.` ` ` `if` `(tmp[0] == ` `'1'` `)` ` ` `tmp = xor1(divisor, tmp);` ` ` `else` ` ` `tmp = xor1(std::string(pick, ` `'0'` `), tmp);` ` ` ` ` `return` `tmp;` `}` `// Function used at the sender side to encode` `// data by appending remainder of modular division` `// at the end of data.` `void` `encodeData(string data, string key)` `{` ` ` `int` `l_key = key.length();` ` ` ` ` `// Appends n-1 zeroes at end of data` ` ` `string appended_data = (data +` ` ` `std::string(` ` ` `l_key - 1, ` `'0'` `));` ` ` ` ` `string remainder = mod2div(appended_data, key);` ` ` ` ` `// Append remainder in the original data` ` ` `string codeword = data + remainder;` ` ` `cout << ` `"Remainder : "` ` ` `<< remainder << ` `"\n"` `;` ` ` `cout << ` `"Encoded Data (Data + Remainder) :"` ` ` `<< codeword << ` `"\n"` `;` `}` ` ` `// Driver code` `int` `main()` `{` ` ` `string data = ` `"100100"` `;` ` ` `string key = ` `"1101"` `;` ` ` ` ` `encodeData(data, key);` ` ` ` ` `return` `0;` `}` `// This code is contributed by MuskanKalra1` |

## Python3

`# Returns XOR of 'a' and 'b'` `# (both of same length)` `def` `xor(a, b):` ` ` `# initialize result` ` ` `result ` `=` `[]` ` ` `# Traverse all bits, if bits are` ` ` `# same, then XOR is 0, else 1` ` ` `for` `i ` `in` `range` `(` `1` `, ` `len` `(b)):` ` ` `if` `a[i] ` `=` `=` `b[i]:` ` ` `result.append(` `'0'` `)` ` ` `else` `:` ` ` `result.append(` `'1'` `)` ` ` `return` `''.join(result)` `# Performs Modulo-2 division` `def` `mod2div(divident, divisor):` ` ` `# Number of bits to be XORed at a time.` ` ` `pick ` `=` `len` `(divisor)` ` ` `# Slicing the divident to appropriate` ` ` `# length for particular step` ` ` `tmp ` `=` `divident[` `0` `: pick]` ` ` `while` `pick < ` `len` `(divident):` ` ` `if` `tmp[` `0` `] ` `=` `=` `'1'` `:` ` ` `# replace the divident by the result` ` ` `# of XOR and pull 1 bit down` ` ` `tmp ` `=` `xor(divisor, tmp) ` `+` `divident[pick]` ` ` `else` `: ` `# If leftmost bit is '0'` ` ` `# If the leftmost bit of the dividend (or the` ` ` `# part used in each step) is 0, the step cannot` ` ` `# use the regular divisor; we need to use an` ` ` `# all-0s divisor.` ` ` `tmp ` `=` `xor(` `'0'` `*` `pick, tmp) ` `+` `divident[pick]` ` ` `# increment pick to move further` ` ` `pick ` `+` `=` `1` ` ` `# For the last n bits, we have to carry it out` ` ` `# normally as increased value of pick will cause` ` ` `# Index Out of Bounds.` ` ` `if` `tmp[` `0` `] ` `=` `=` `'1'` `:` ` ` `tmp ` `=` `xor(divisor, tmp)` ` ` `else` `:` ` ` `tmp ` `=` `xor(` `'0'` `*` `pick, tmp)` ` ` `checkword ` `=` `tmp` ` ` `return` `checkword` `# Function used at the sender side to encode` `# data by appending remainder of modular division` `# at the end of data.` `def` `encodeData(data, key):` ` ` `l_key ` `=` `len` `(key)` ` ` `# Appends n-1 zeroes at end of data` ` ` `appended_data ` `=` `data ` `+` `'0'` `*` `(l_key` `-` `1` `)` ` ` `remainder ` `=` `mod2div(appended_data, key)` ` ` `# Append remainder in the original data` ` ` `codeword ` `=` `data ` `+` `remainder` ` ` `print` `(` `"Remainder : "` `, remainder)` ` ` `print` `(` `"Encoded Data (Data + Remainder) : "` `,` ` ` `codeword)` `# Driver code` `data ` `=` `"100100"` `key ` `=` `"1101"` `encodeData(data, key)` |

**Output:**

Remainder : 001 Encoded Data (Data + Remainder) : 100100001

Note that CRC is mainly designed and used to protect against common of errors on communication channels and NOT suitable protection against intentional alteration of data (See reasons here)

**Implementation using Bit Manipulation:**

CRC codeword generation can also be done using bit manipulation methods as follows:

## C++

`// C++ Program to generate CRC codeword` `#include<stdio.h>` `#include<iostream>` `#include<math.h>` `using` `namespace` `std;` `// function to convert integer to binary string` `string toBin(` `long` `long` `int` `num){` ` ` `string bin = ` `""` `;` ` ` `while` `(num){` ` ` `if` `(num & 1)` ` ` `bin = ` `"1"` `+ bin;` ` ` `else` ` ` `bin = ` `"0"` `+ bin;` ` ` `num = num>>1;` ` ` `}` ` ` `return` `bin;` `}` `// function to convert binary string to decimal` `long` `long` `int` `toDec(string bin){` ` ` `long` `long` `int` `num = 0;` ` ` `for` `(` `int` `i=0; i<bin.length(); i++){` ` ` `if` `(bin.at(i)==` `'1'` `)` ` ` `num += 1 << (bin.length() - i - 1);` ` ` `}` ` ` `return` `num;` `}` `// function to compute CRC and codeword` `void` `CRC(string dataword, string generator){` ` ` `int` `l_gen = generator.length();` ` ` `long` `long` `int` `gen = toDec(generator);` ` ` `long` `long` `int` `dword = toDec(dataword);` ` ` `// append 0s to dividend` ` ` `long` `long` `int` `dividend = dword << (l_gen-1); ` ` ` `// shft specifies the no. of least` ` ` `// significant bits not being XORed` ` ` `int` `shft = (` `int` `) ceill(log2l(dividend+1)) - l_gen; ` ` ` `long` `long` `int` `rem;` ` ` `while` `((dividend >= gen) || (shft >= 0)){` ` ` `// bitwise XOR the MSBs of dividend with generator` ` ` `// replace the operated MSBs from the dividend with` ` ` `// remainder generated` ` ` `rem = (dividend >> shft) ^ gen; ` ` ` `dividend = (dividend & ((1 << shft) - 1)) | (rem << shft);` ` ` `// change shft variable` ` ` `shft = (` `int` `) ceill(log2l(dividend + 1)) - l_gen;` ` ` `}` ` ` `// finally, AND the initial dividend with the remainder (=dividend)` ` ` `long` `long` `int` `codeword = (dword << (l_gen - 1)) | dividend;` ` ` `cout << ` `"Remainder: "` `<< toBin(dividend) << endl;` ` ` `cout << ` `"Codeword : "` `<< toBin(codeword) << endl;` `}` `int` `main(){` ` ` `string dataword, generator;` ` ` `dataword = ` `"10011101"` `;` ` ` `generator = ` `"1001"` `;` ` ` `CRC(dataword, generator);` ` ` `return` `0;` `}` |

## Python3

`# Python3 program to generate CRC codeword` `from` `math ` `import` `log, ceil` `def` `CRC(dataword, generator):` ` ` `dword ` `=` `int` `(dataword, ` `2` `)` ` ` `l_gen ` `=` `len` `(generator)` ` ` `# append 0s to dividend` ` ` `dividend ` `=` `dword << (l_gen ` `-` `1` `) ` ` ` `# shft specifies the no. of least significant` ` ` `# bits not being XORed` ` ` `shft ` `=` `ceil(log(dividend ` `+` `1` `, ` `2` `)) ` `-` `l_gen ` ` ` `# ceil(log(dividend+1 , 2)) is the no. of binary` ` ` `# digits in dividend` ` ` `generator ` `=` `int` `(generator, ` `2` `)` ` ` `while` `dividend >` `=` `generator ` `or` `shft >` `=` `0` `:` ` ` `# bitwise XOR the MSBs of dividend with generator` ` ` `# replace the operated MSBs from the dividend with` ` ` `# remainder generated` ` ` `rem ` `=` `(dividend >> shft) ^ generator ` ` ` `dividend ` `=` `(dividend & ((` `1` `<< shft) ` `-` `1` `)) | (rem << shft)` ` ` ` ` `# change shft variable` ` ` `shft ` `=` `ceil(log(dividend` `+` `1` `, ` `2` `)) ` `-` `l_gen` ` ` `# finally, AND the initial dividend with the remainder (=dividend)` ` ` `codeword ` `=` `dword << (l_gen` `-` `1` `)|dividend` ` ` `print` `(` `"Remainder:"` `, ` `bin` `(dividend).lstrip(` `"-0b"` `))` ` ` `print` `(` `"Codeword :"` `, ` `bin` `(codeword).lstrip(` `"-0b"` `))` `# Driver code` `dataword ` `=` `"10011101"` `generator ` `=` `"1001"` `CRC(dataword, generator)` |

**Output:**

Remainder: 100 Codeword : 10011101100

**References:**

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

This article is contributed by **Jay Patel**. If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above